Quantum Counterpart Theory

Adam Caulton

Institute of Philosophy, School of Advanced Study, and Department of Philosophy, Logic and Scientific Method, LSE, UK

University of Leeds, 7 March 2012
The project, broadly construed

What is the best interpretation of quantum mechanics for “indistinguishable” systems, in which particles are properly taken as the theory’s subject matter?

1 The orthodox interpretation (Factorism) is defective.
The project, broadly construed

What is the best interpretation of quantum mechanics for “indistinguishable” systems, in which particles are properly taken as the theory’s subject matter?

1. The orthodox interpretation (**Factorism**) is defective.
2. The best interpretation is one in which particles are “branch-bound” entities, or fusions thereof. (**Micro-Everettianism**)
The project, broadly construed

What is the best interpretation of quantum mechanics for “indistinguishable” systems, in which particles are properly taken as the theory’s subject matter?

1. The orthodox interpretation (Factorism) is defective.
2. The best interpretation is one in which particles are “branch-bound” entities, or fusions thereof. (Micro-Everettianism)
3. Micro-Everettianism has formal similarities with Lewis’s Counterpart Theory, but is motivated by specifically quantum concerns.
What is the best interpretation of quantum mechanics for “indistinguishable” systems, in which particles are properly taken as the theory’s subject matter?

1. The orthodox interpretation (Factorism) is defective.
2. The best interpretation is one in which particles are “branch-bound” entities, or fusions thereof. (Micro-Everettianism)
3. Micro-Everettianism has formal similarities with Lewis’s Counterpart Theory, but is motivated by specifically quantum concerns.
4. A particle interpretation may, after all, be untenable.
The project, broadly construed

What is the best interpretation of quantum mechanics for “indistinguishable” systems, in which particles are properly taken as the theory’s subject matter?

1. The orthodox interpretation (**Factorism**) is defective.
2. The best interpretation is one in which particles are “branch-bound” entities, or fusions thereof. (**Micro-Everettianism**)
3. Micro-Everettianism has *formal similarities* with Lewis’s Counterpart Theory, but is motivated by specifically quantum concerns.
4. A particle interpretation may, after all, be untenable.
Why should CT need QM?

Isn’t there already a (topic-neutral) argument for Counterpart Theory?

Lewis’s (1986, 2009) argument against trans-world overlap ("endurance through worlds") – the argument from accidental intrinsics – assumes Genuine Modal Realism; ersatzers escape. Quantum considerations address realists and ersatzers alike.
Why should CT need QM?

Isn’t there already a (topic-neutral) argument for Counterpart Theory?

Lewis’s (1986, 2009) argument against trans-world overlap (“endurance through worlds”) – the argument from accidental intrinsics – assumes Genuine Modal Realism; ersatzers escape. Quantum considerations address realists and ersatzers alike.

The quantum argument is not that superpositions force (some degree of) GMR, and therefore the problem of accidental intrinsics. Mixed states of the constituents deal with this issue.
Isn’t there already a (topic-neutral) argument for Counterpart Theory?

Lewis’s (1986, 2009) argument against trans-world overlap (“endurance through worlds”) – the argument from accidental intrinsics – assumes Genuine Modal Realism; ersatzers escape. Quantum considerations address realists and ersatzers alike.

The quantum argument is not that superpositions force (some degree of) GMR, and therefore the problem of accidental intrinsics. Mixed states of the constituents deal with this issue.

Rather, the argument will be that no suitable equivalence relation can be found that could unify particles between all states. It is therefore closer to (Lewis's reconstrual of) Quine’s (1976) argument.
Why should CT need QM?

Isn’t there already a (topic-neutral) argument for Counterpart Theory?

Lewis’s (1986, 2009) argument against trans-world overlap ("endurance through worlds") – the argument from accidental intrinsics – assumes Genuine Modal Realism; ersatzers escape. Quantum considerations address realists and ersatzers alike.

The quantum argument is not that superpositions force (some degree of) GMR, and therefore the problem of accidental intrinsics. Mixed states of the constituents deal with this issue.

Rather, the argument will be that no suitable equivalence relation can be found that could unify particles between all states. It is therefore closer to (Lewis’s reconstrual of) Quine’s (1976) argument.
Constraints on quantum interpretations

I will look only for a “realist” interpretation: treating Ψ as “ontic” rather than “epistemic”.

I will assume that Ψ is complete—at least for the micro-world (so I will not consider e.g. modal theories or de Broglie-Bohm).
I will look only for a “realist” interpretation: treating \(\Psi \) as “ontic” rather than “epistemic”.

I will assume that \(\Psi \) is complete—at least for the micro-world (so I will not consider e.g. modal theories or de Broglie-Bohm).

My concern is with the micro-world, so I will not need to choose between Everett and dynamical collapse theories.
Constraints on quantum interpretations

1. I will look only for a “realist” interpretation: treating Ψ as “ontic” rather than “epistemic”.

2. I will assume that Ψ is complete—at least for the micro-world (so I will not consider e.g. modal theories or de Broglie-Bohm).

3. My concern is with the micro-world, so I will not need to choose between Everett and dynamical collapse theories.
Outline

1. Against factorism
 - Factorism defined
 - Factorism is not haecceitism
 - Why factorism is wrong

2. Qualitative individuation
 - Natural decompositions
 - Qualitative individuation

3. Micro-Everettianism
 - Branch-bound particles
 - Endurantism or perdurantism?

4. Problems for Micro-Everettianism
 - A preferred basis problem
 - Possible escapes?
Factorism defined (1)

- Consider an assembly of two “distinguishable” quantum systems. (This means the systems have state-independent properties by which they are absolutely discernible.)
- Let the first system’s Hilbert space be \mathcal{H}_1, and the second’s \mathcal{H}_2.
Factorism defined (1)

- Consider an assembly of two “distinguishable” quantum systems. (This means the systems have state-independent properties by which they are absolutely discernible.)
- Let the first system’s Hilbert space be \mathcal{H}_1, and the second’s \mathcal{H}_2.
- Then form the joint Hilbert space $\mathcal{H}_1 \otimes \mathcal{H}_2$.

Factorism defined (1)

- Consider an assembly of two “distinguishable” quantum systems. (This means the systems have state-independent properties by which they are absolutely discernible.)
- Let the first system’s Hilbert space be \mathcal{H}_1, and the second’s \mathcal{H}_2.
- Then form the joint Hilbert space $\mathcal{H}_1 \otimes \mathcal{H}_2$.
- It is normal to take \mathcal{H}_1 as it occurs as a factor Hilbert space as representing the possible states for the first system, and \mathcal{H}_2 to represent the possible states for the second system.
Factorism defined (1)

- Consider an assembly of two “distinguishable” quantum systems. (This means the systems have state-independent properties by which they are absolutely discernible.)
- Let the first system’s Hilbert space be \mathcal{H}_1, and the second’s \mathcal{H}_2.
- Then form the joint Hilbert space $\mathcal{H}_1 \otimes \mathcal{H}_2$.
- It is normal to take \mathcal{H}_1 as it occurs as a factor Hilbert space as representing the possible states for the first system, and \mathcal{H}_2 to represent the possible states for the second system.
- So, e.g., $|\xi\rangle_1 \otimes |\eta\rangle_2$ is interpreted as: system 1 being in the state (represented by) $|\xi\rangle$ and system 2 being in the state (represented by) $|\eta\rangle$.
- Any non-separable state counts as entangled.
Consider an assembly of two “distinguishable” quantum systems. (This means the systems have state-independent properties by which they are absolutely discernible.)

Let the first system’s Hilbert space be \mathcal{H}_1, and the second’s \mathcal{H}_2.

Then form the joint Hilbert space $\mathcal{H}_1 \otimes \mathcal{H}_2$.

It is normal to take \mathcal{H}_1 as it occurs as a factor Hilbert space as representing the possible states for the first system, and \mathcal{H}_2 to represent the possible states for the second system.

So, e.g., $|\xi\rangle_1 \otimes |\eta\rangle_2$ is interpreted as: system 1 being in the state (represented by) $|\xi\rangle$ and system 2 being in the state (represented by) $|\eta\rangle$.

Any non-separable state counts as entangled.
Factorism defined (2)

- Now consider an assembly of two “indistinguishable” quantum systems (systems with identical state-independent properties—mass, charge, spin).
- The two systems’ individual Hilbert spaces are isomorphic: let \mathcal{H} be this single-system Hilbert space.
Factorism defined (2)

- Now consider an assembly of two “indistinguishable” quantum systems (systems with identical state-independent properties—mass, charge, spin).

- The two systems’ individual Hilbert spaces are isomorphic: let \mathcal{H} be this single-system Hilbert space.

- Then form the joint Hilbert space $\mathcal{H} \otimes \mathcal{H}$.
Now consider an assembly of two “indistinguishable” quantum systems (systems with identical state-independent properties—mass, charge, spin).

The two systems’ individual Hilbert spaces are isomorphic: let \mathcal{H} be this single-system Hilbert space.

Then form the joint Hilbert space $\mathcal{H} \otimes \mathcal{H}$.

Then impose permutation invariance:

$$\forall \pi \in S_N : \langle \psi | U^\dagger (\pi) QU(\pi) | \psi \rangle = \langle \psi | Q | \psi \rangle \quad (1)$$
Factorism defined (2)

- Now consider an assembly of two "indistinguishable" quantum systems (systems with identical state-independent properties—mass, charge, spin).
- The two systems’ individual Hilbert spaces are isomorphic: let \(\mathcal{H} \) be this single-system Hilbert space.
- Then form the joint Hilbert space \(\mathcal{H} \otimes \mathcal{H} \).
- Then impose permutation invariance:

\[
\forall \pi \in S_N : \langle \psi | U^\dagger(\pi)QU(\pi)|\psi \rangle = \langle \psi | Q|\psi \rangle \quad (1)
\]

- This prompts us to consider, as a Hilbert space for the assembly:

either \(S_s(\mathcal{H} \otimes \mathcal{H}) \) or \(S_a(\mathcal{H} \otimes \mathcal{H}) \)
Factorism defined (2)

- Now consider an assembly of two “indistinguishable” quantum systems (systems with identical state-independent properties—mass, charge, spin).
- The two systems’ individual Hilbert spaces are isomorphic: let \mathcal{H} be this single-system Hilbert space.
- Then form the joint Hilbert space $\mathcal{H} \otimes \mathcal{H}$.
- Then impose permutation invariance:

$$\forall \pi \in S_N : \langle \psi | U^\dagger(\pi)QU(\pi)|\psi \rangle = \langle \psi | Q |\psi \rangle$$

(1)

- This prompts us to consider, as a Hilbert space for the assembly:

$$S_s(\mathcal{H} \otimes \mathcal{H}) \text{ or } S_a(\mathcal{H} \otimes \mathcal{H})$$
Factorism defined (3)

\[S_s(\mathcal{H} \otimes \mathcal{H}) \quad \text{or} \quad S_a(\mathcal{H} \otimes \mathcal{H}) \]

- **Factorism** is the doctrine that, as in the “distinguishable” case, each factor Hilbert space represents the possible states for one of the systems.
Factorism defined (3)

\[S_s(\mathcal{H} \otimes \mathcal{H}) \text{ or } S_a(\mathcal{H} \otimes \mathcal{H}) \]

- **Factorism** is the doctrine that, as in the “distinguishable” case, each factor Hilbert space represents the possible states for one of the systems.
- Thus one may take each factor Hilbert space label as a particle label.
Factorism defined (3)

\[S_5(\mathcal{H} \otimes \mathcal{H}) \text{ or } S_a(\mathcal{H} \otimes \mathcal{H}) \]

- **Factorism** is the doctrine that, as in the “distinguishable” case, each factor Hilbert space represents the possible states for one of the systems.
- Thus one may take each factor Hilbert space label as a particle label.
- So, e.g., \(\frac{1}{\sqrt{2}} (|\xi\rangle_1 \otimes |\eta\rangle_2 + |\eta\rangle_1 \otimes |\xi\rangle_2) \)’ is interpreted as entangled—i.e., a superposition of multi-system states.
Factorism is the doctrine that, as in the “distinguishable” case, each factor Hilbert space represents the possible states for one of the systems.

Thus one may take each factor Hilbert space label as a particle label.

So, e.g., \(\frac{1}{\sqrt{2}} (|\xi\rangle_1 \otimes |\eta\rangle_2 + |\eta\rangle_1 \otimes |\xi\rangle_2) \) is interpreted as entangled—i.e., a superposition of multi-system states.
Outline

1. Against factorism
 - Factorism defined
 - **Factorism is not haecceitism**
 - Why factorism is wrong

2. Qualitative individuation
 - Natural decompositions
 - Qualitative individuation

3. Micro-Everettianism
 - Branch-bound particles
 - Endurantism or perdurantism?

4. Problems for Micro-Everettianism
 - A preferred basis problem
 - Possible escapes?
Factorism is not haecceitism

Two natural definitions of haecceitism for QM:

1. (Metaphysical.) The acceptance of haecceitic differences (cf. Lewis (1986, p. 221)); i.e., two states may differ solely as to how the systems are embedded in the web of properties and relations.
Factorism is not haecceitism

Two natural definitions of **haecceitism** for QM:

1. *(Metaphysical.)* The acceptance of haecceitistic differences (cf. Lewis (1986, p. 221)); i.e., two states may differ solely as to how the systems are embedded in the web of properties and relations.

2. *(Mathematical.)* Distinct state-vectors $|\psi\rangle$ and $P|\psi\rangle$ represent distinct physical states (cf. Messiah & Greenberg 1964).
Factorism is not haecceitism

Two natural definitions of **haecceitism** for QM:

1. *(Metaphysical.)* The acceptance of haecceitistic differences (cf. Lewis (1986, p. 221)); i.e., two states may differ solely as to how the systems are embedded in the web of properties and relations.

2. *(Mathematical.)* Distinct state-vectors $|\psi\rangle$ and $P|\psi\rangle$ represent distinct physical states (cf. Messiah & Greenberg 1964).

Factorism \Rightarrow (Haecceitism 1 \leftrightarrow Haecceitism 2)
Factorism is not haecceitism

- Two natural definitions of **haecceitism** for QM:
 1. *(Metaphysical.)* The acceptance of haecceitistic differences (cf. Lewis (1986, p. 221)); i.e., two states may differ solely as to how the systems are embedded in the web of properties and relations.
 2. *(Mathematical.)* Distinct state-vectors $|\psi\rangle$ and $P|\psi\rangle$ represent distinct physical states (cf. Messiah & Greenberg 1964).

- Factorism \Rightarrow (Haecceitism 1 \leftrightarrow Haecceitism 2)

- A factorist may accept or reject haecceitism (but must take the same stance towards both).
Factorism is not haecceitism

- Two natural definitions of **haeceitism** for QM:
 1. *(Metaphysical.)* The acceptance of haecceitistic differences (cf. Lewis (1986, p. 221)); i.e., two states may differ solely as to how the systems are embedded in the web of properties and relations.
 2. *(Mathematical.)* Distinct state-vectors $|\psi\rangle$ and $P|\psi\rangle$ represent distinct physical states (cf. Messiah & Greenberg 1964).

- Factorism \Rightarrow (Haecceitism 1 \iff Haecceitism 2)

- A factorist may accept or reject haecceitism (but must take the same stance towards both).

- A proponent of either haecceitism may accept or reject factorism.
Factorism is not haecceitism

- Two natural definitions of **haecceitism** for QM:
 1. (*Metaphysical.*) The acceptance of haecceitistic differences (cf. Lewis (1986, p. 221)); i.e., two states may differ solely as to how the systems are embedded in the web of properties and relations.
 2. (*Mathematical.*) Distinct state-vectors $|\psi\rangle$ and $P|\psi\rangle$ represent distinct physical states (cf. Messiah & Greenberg 1964).

- Factorism \Rightarrow (Haecceitism 1 \leftrightarrow Haecceitism 2)
- A factorist may accept or reject haecceitism (but must take the same stance towards both).
- A proponent of either haecceitism may accept or reject factorism.

Micro-Everettianism is
Factorism is not haecceitism

- Two natural definitions of **haecceitism** for QM:
 1. *(Metaphysical.)* The acceptance of haecceitistic differences (cf. Lewis (1986, p. 221)); i.e., two states may differ solely as to how the systems are embedded in the web of properties and relations.
 2. *(Mathematical.)* Distinct state-vectors \(|\psi\rangle \) and \(P|\psi\rangle \) represent distinct physical states (cf. Messiah & Greenberg 1964).

- Factorism \(\Rightarrow \) (Haecceitism 1 \(\leftrightarrow \) Haecceitism 2)
- A factorist may accept or reject haecceitism (but must take the same stance towards both).
- A proponent of either haecceitism may accept or reject factorism.
- Micro-Everettianism is
 - anti-factorist;
Factorism is not haecceitism

- Two natural definitions of **haecceitism** for QM:
 1. *(Metaphysical.)* The acceptance of haecceitistic differences (cf. Lewis (1986, p. 221)); i.e., two states may differ solely as to how the systems are embedded in the web of properties and relations.
 2. *(Mathematical.)* Distinct state-vectors $|\psi\rangle$ and $P|\psi\rangle$ represent distinct physical states (cf. Messiah & Greenberg 1964).

- **Factorism \Rightarrow (Haecceitism 1 \leftrightarrow Haecceitism 2)**

- A factorist may accept or reject haecceitism (but must take the same stance towards both).

- A proponent of either haecceitism may accept or reject factorism.

- Micro-Everettianism is
 - anti-factorist;
 - anti-haecceitist (in the metaphysical sense); and
Factorism is not haecceitism

Two natural definitions of **haecceitism** for QM:

1. *(Metaphysical.*) The acceptance of haecceitistic differences (cf. Lewis (1986, p. 221)); i.e., two states may differ solely as to how the systems are embedded in the web of properties and relations.

2. *(Mathematical.*) Distinct state-vectors $|\psi\rangle$ and $P|\psi\rangle$ represent distinct physical states (cf. Messiah & Greenberg 1964).

Factorism \Rightarrow (Haecceitism 1 \leftrightarrow Haecceitism 2)

A factorist may accept or reject haecceitism (but must take the same stance towards both).

A proponent of either haecceitism may accept or reject factorism.

Micro-Everettianism is

- anti-factorist;
- anti-haecceitist (in the metaphysical sense); and
- anti-haecceitist (in the mathematical sense).
Two natural definitions of **haecceitism** for QM:

1. *(Metaphysical.)* The acceptance of haecceitic differences (cf. Lewis (1986, p. 221)); i.e., two states may differ solely as to how the systems are embedded in the web of properties and relations.

2. *(Mathematical.)* Distinct state-vectors $|\psi\rangle$ and $P|\psi\rangle$ represent distinct physical states (cf. Messiah & Greenberg 1964).

Factorism \Rightarrow (Haecceitism 1 \leftrightarrow Haecceitism 2)

A factorist may accept or reject haecceitism (but must take the same stance towards both).

A proponent of either haecceitism may accept or reject factorism.

Micro-Everettianism is

- anti-factorist;
- anti-haecceitist (in the metaphysical sense); and
- anti-haecceitist (in the mathematical sense).
Outline

1 Against factorism
 - Factorism defined
 - Factorism is not haecceitism
 - Why factorism is wrong

2 Qualitative individuation
 - Natural decompositions
 - Qualitative individuation

3 Micro-Everettianism
 - Branch-bound particles
 - Endurantism or perdurantism?

4 Problems for Micro-Everettianism
 - A preferred basis problem
 - Possible escapes?
Why factorism is wrong (1)

- Under factorism, single-system states may be calculated using the partial trace operation.

\[\forall |\psi\rangle \in S_\lambda (\mathcal{H} \otimes \mathcal{H}) : \quad \rho_1 := \text{Tr}_2 (|\psi\rangle \langle \psi|) , \quad \rho_2 := \text{Tr}_1 (|\psi\rangle \langle \psi|) \quad (2) \]
Why factorism is wrong (1)

- Under factorism, single-system states may be calculated using the partial trace operation.

$$\forall |\psi\rangle \in S_\lambda(\mathcal{H} \otimes \mathcal{H}) : \quad \rho_1 := \text{Tr}_2 (|\psi\rangle\langle\psi|), \quad \rho_2 := \text{Tr}_1 (|\psi\rangle\langle\psi|) \quad (2)$$

- If these are mixtures, they are not ignorance-interpretable.
- But for all $|\psi\rangle \in S_\lambda(\mathcal{H} \otimes \mathcal{H})$, $U(\pi)|\psi\rangle\langle\psi|U^\dagger(\pi) = |\psi\rangle\langle\psi|$, so $\rho_1 = \rho_2$.
Why factorism is wrong (1)

- Under factorism, single-system states may be calculated using the partial trace operation.

\[\forall |\psi\rangle \in S_\lambda (H \otimes H) : \quad \rho_1 := \text{Tr}_2 (|\psi\rangle \langle \psi|) , \quad \rho_2 := \text{Tr}_1 (|\psi\rangle \langle \psi|) \] (2)

- If these are mixtures, they are not **ignorance-interpretable**.

- But for all \(|\psi\rangle \in S_\lambda (H \otimes H) \), \(U(\pi)|\psi\rangle \langle \psi|U^\dagger(\pi) = |\psi\rangle \langle \psi| \), so \(\rho_1 = \rho_2 \).

- So, assuming factorism, the two systems share the same properties (including relational properties)—i.e., they are absolutely (aka: monadically) **indiscernible**.
Why factorism is wrong (1)

- Under factorism, single-system states may be calculated using the partial trace operation.

\[\forall \psi \in S_{\lambda}(H \otimes H) : \rho_1 := \text{Tr}_2(|\psi\rangle\langle\psi|), \quad \rho_2 := \text{Tr}_1(|\psi\rangle\langle\psi|) \] (2)

- If these are mixtures, they are not **ignorance-interpretable**.

- But for all \(|\psi\rangle \in S_{\lambda}(H \otimes H) \), \(U(\pi)|\psi\rangle\langle\psi|U^\dagger(\pi) = |\psi\rangle\langle\psi| \), so \(\rho_1 = \rho_2 \).

- So, assuming factorism, the two systems **share the same properties** (including relational properties)—i.e., they are **absolutely** (aka: monadically) **indiscernible**.

Why factorism is wrong (1)

- Under factorism, single-system states may be calculated using the partial trace operation.

\[\forall \left| \psi \right\rangle \in S_\lambda (\mathcal{H} \otimes \mathcal{H}) : \quad \rho_1 := \text{Tr}_2 \left(\left| \psi \right\rangle \left\langle \psi \right| \right), \quad \rho_2 := \text{Tr}_1 \left(\left| \psi \right\rangle \left\langle \psi \right| \right) \] (2)

- If these are mixtures, they are not ignorance-interpretable.
- But for all \(\left| \psi \right\rangle \in S_\lambda (\mathcal{H} \otimes \mathcal{H}) \), \(U(\pi) \left| \psi \right\rangle \left\langle \psi \right| U^\dagger (\pi) = \left| \psi \right\rangle \left\langle \psi \right| \), so \(\rho_1 = \rho_2 \).
- So, assuming factorism, the two systems share the same properties (including relational properties)—i.e., they are absolutely (aka: monadically) indiscernible.
If “indistinguishable” systems are absolutely indiscernible, then:

- They cannot be *individuated* (uniquely picked out) in language or in thought (cf. Pooley 2006). (But: indexicality as a possible way out.)
Why factorism is wrong (2)

If “indistinguishable” systems are absolutely indiscernible, then:

- They cannot be **individuated** (uniquely picked out) in language or in thought (cf. Pooley 2006). (But: indexicality as a possible way out.)
- We do not recover determinate trajectories in the classical limit (cf. Dieks & Lubberdink 2008).
Why factorism is wrong (2)

If “indistinguishable” systems are absolutely indiscernible, then:

- They cannot be **individuated** (uniquely picked out) in language or in thought (cf. Pooley 2006). (But: indexicality as a possible way out.)
- We do not recover determinate trajectories in the classical limit (cf. Dieks & Lubberdink 2008).
- Factorist particles may not be identified with Fock space quanta, which are characterised by a complete set of quantum numbers.
If "indistinguishable" systems are absolutely indiscernible, then:

- They cannot be *individuated* (uniquely picked out) in language or in thought (cf. Pooley 2006). (But: indexicality as a possible way out.)
- We do not recover determinate trajectories in the classical limit (cf. Dieks & Lubberdink 2008).
- Factorist particles may not be identified with Fock space quanta, which are characterised by a complete set of quantum numbers.

(See also Earman and Bigaj.)
If “indistinguishable” systems are absolutely indiscernible, then:

- They cannot be *individuated* (uniquely picked out) in language or in thought (cf. Pooley 2006). (But: indexicality as a possible way out.)
- We do not recover determinate trajectories in the classical limit (cf. Dieks & Lubberdink 2008).
- Factorist particles may not be identified with Fock space quanta, which are characterised by a complete set of quantum numbers. (See also Earman and Bigaj.)
Outline

1 Against factorism
 - Factorism defined
 - Factorism is not haecceitism
 - Why factorism is wrong

2 Qualitative individuation
 - Natural decompositions
 - Qualitative individuation

3 Micro-Everettianism
 - Branch-bound particles
 - Endurantism or perdurantism?

4 Problems for Micro-Everettianism
 - A preferred basis problem
 - Possible escapes?
Decomposing the joint Hilbert space

- So how are constituent systems represented in the quantum formalism?
- I will cash out the idea of a constituent system of an assembly in terms of natural decompositions of the assembly’s Hilbert space, or the assembly’s algebra of operators.
Decomposing the joint Hilbert space

- So how are constituent systems represented in the quantum formalism?
- I will cash out the idea of a constituent system of an assembly in terms of **natural decompositions** of the assembly’s Hilbert space, or the assembly’s algebra of operators.
- Factorism’s mistake is that it does not decompose the right Hilbert space. It decomposes $\mathcal{H} \otimes \mathcal{H}$, but $S_\lambda(\mathcal{H} \otimes \mathcal{H})$ is the right state space (at least, for anti-haecceitists).
Decomposing the joint Hilbert space

- So how are constituent systems represented in the quantum formalism?
- I will cash out the idea of a constituent system of an assembly in terms of natural decompositions of the assembly’s Hilbert space, or the assembly’s algebra of operators.
- Factorism’s mistake is that it does not decompose the right Hilbert space. It decomposes $\mathcal{H} \otimes \mathcal{H}$, but $S_{\lambda}(\mathcal{H} \otimes \mathcal{H})$ is the right state space (at least, for anti-haecceitists).
Natural decompositions (1)

- Zanardi (2001) and Zanardi, Lidar & Lloyd (2004): Let \mathcal{A} be the joint algebra we wish to decompose.
- Then we seek two subalgebras $\mathcal{A}_1, \mathcal{A}_2$ of \mathcal{A}, satisfying:

 1. Local accessibility. (Sensible quantities.)
 2. Subsystem independence: the subalgebras commute: $\forall A \in \mathcal{A}_1, \forall B \in \mathcal{A}_2: [A, B] = 0$. (3)
 I.e. each system possesses its properties independently of the other.
 3. Completeness: the minimal algebra containing \mathcal{A}_1 and \mathcal{A}_2 amounts to \mathcal{A}, and we have an isomorphism: $\mathcal{A} := \mathcal{A}_1 \lor \mathcal{A}_2 \cong a_1 \otimes a_2$ (4)
 for two "single-system" algebras a_1, a_2 such that $a_1 \otimes 1 \cong \mathcal{A}_1$ and $1 \otimes a_2 \cong \mathcal{A}_2$.
 I.e. the assembly has been decomposed without residue.
Natural decompositions (1)

- Zanardi (2001) and Zanardi, Lidar & Lloyd (2004):
 Let \mathcal{A} be the joint algebra we wish to decompose.
 Then we seek two subalgebras $\mathcal{A}_1, \mathcal{A}_2$ of \mathcal{A}, satisfying:
 - **Local accessibility.** (Sensible quantities.)
Natural decompositions (1)

- Zanardi (2001) and Zanardi, Lidar & Lloyd (2004): Let \mathcal{A} be the joint algebra we wish to decompose.
- Then we seek two subalgebras $\mathcal{A}_1, \mathcal{A}_2$ of \mathcal{A}, satisfying:
 - **Local accessibility.** (Sensible quantities.)
 - **Subsystem independence:** The subalgebras commute:

$$\forall A \in \mathcal{A}_1, \forall B \in \mathcal{A}_2 : [A, B] = 0.$$ \hspace{1cm} (3)

i.e. each system possesses its properties **independently** of the other.
Natural decompositions (1)

- Zanardi (2001) and Zanardi, Lidar & Lloyd (2004): Let \mathcal{A} be the joint algebra we wish to decompose.
- Then we seek two subalgebras $\mathcal{A}_1, \mathcal{A}_2$ of \mathcal{A}, satisfying:
 1. **Local accessibility.** (Sensible quantities.)
 2. **Subsystem independence:** The subalgebras commute:

\[\forall A \in \mathcal{A}_1, \forall B \in \mathcal{A}_2 : [A, B] = 0. \]

(3)

I.e. each system possesses its properties **independently** of the other.

3. **Completeness:** the minimal algebra containing \mathcal{A}_1 and \mathcal{A}_2 amount to \mathcal{A}, and we have an isomorphism:

\[\mathcal{A} := \mathcal{A}_1 \lor \mathcal{A}_2 \cong a_1 \otimes a_2 \]

(4)

for two “single-system” algebras a_1, a_2 such that $a_1 \otimes 1 \cong \mathcal{A}_1$ and $1 \otimes a_2 \cong \mathcal{A}_2$.

I.e. the assembly has been **decomposed without residue.**
Natural decompositions (1)

- Zanardi (2001) and Zanardi, Lidar & Lloyd (2004):
 Let \mathcal{A} be the joint algebra we wish to decompose.

- Then we seek two subalgebras $\mathcal{A}_1, \mathcal{A}_2$ of \mathcal{A}, satisfying:
 1. **Local accessibility.** (Sensible quantities.)
 2. **Subsystem independence:** The subalgebras commute:
 \[
 \forall A \in \mathcal{A}_1, \forall B \in \mathcal{A}_2 : [A, B] = 0. \tag{3}
 \]
 I.e. each system possesses its properties **independently** of the other.
 3. **Completeness:** the minimal algebra containing \mathcal{A}_1 and \mathcal{A}_2 amount to \mathcal{A}, and we have an isomorphism:
 \[
 \mathcal{A} := \mathcal{A}_1 \lor \mathcal{A}_2 \cong a_1 \otimes a_2 \tag{4}
 \]
 for two “single-system” algebras a_1, a_2 such that $a_1 \otimes 1 \cong \mathcal{A}_1$ and $1 \otimes a_2 \cong \mathcal{A}_2$.
 I.e. the assembly has been **decomposed without residue.**
Natural decompositions (2)

So let us try to apply the Zanardi recipe to $A = B(S_\lambda(H \otimes H))$.

But $\dim(S_\lambda(H \otimes H))$ might be prime!
Natural decompositions (2)

- So let us try to apply the Zanardi recipe to $\mathcal{A} = \mathcal{B}(S_\lambda(\mathcal{H} \otimes \mathcal{H}))$.
- But dim($S_\lambda(\mathcal{H} \otimes \mathcal{H})$) might be prime!
- So instead I propose to seek natural decompositions of subspaces of the joint Hilbert space $S_\lambda(\mathcal{H} \otimes \mathcal{H})$:

$$S_\lambda(\mathcal{H} \otimes \mathcal{H}) = \bigoplus_i S_i,$$

where each $S_i \sim H^{(i)_1} \otimes H^{(i)_2}$.
So let us try to apply the Zanardi recipe to $A = B(S_{\lambda}(\mathcal{H} \otimes \mathcal{H}))$.

But $\dim(S_{\lambda}(\mathcal{H} \otimes \mathcal{H}))$ might be prime!

So instead I propose to seek natural decompositions of **subspaces** of the joint Hilbert space $S_{\lambda}(\mathcal{H} \otimes \mathcal{H})$:

$$S_{\lambda}(\mathcal{H} \otimes \mathcal{H}) = \bigoplus_{i} \mathcal{S}_i, \quad \text{where each } \mathcal{S}_i \cong \mathcal{H}_1^{(i)} \otimes \mathcal{H}_2^{(i)} \quad (5)$$
Natural decompositions (2)

- So let us try to apply the Zanardi recipe to $\mathcal{A} = \mathcal{B}(S\lambda(\mathcal{H} \otimes \mathcal{H}))$.
- But $\text{dim}(S\lambda(\mathcal{H} \otimes \mathcal{H}))$ might be prime!
- So instead I propose to seek natural decompositions of subspaces of the joint Hilbert space $S\lambda(\mathcal{H} \otimes \mathcal{H})$:

$$S\lambda(\mathcal{H} \otimes \mathcal{H}) = \bigoplus_i \mathcal{S}_i,$$

where each $\mathcal{S}_i \cong \mathcal{H}_1^{(i)} \otimes \mathcal{H}_2^{(i)}$ (5)

- The constituent systems corresponding to a given subspace $\mathcal{H}_1^{(i)} \otimes \mathcal{H}_2^{(i)}$ must then be interpreted as co-existing only in those states represented by the subspace.
Natural decompositions (2)

- So let us try to apply the Zanardi recipe to $\mathcal{A} = \mathcal{B}(\mathcal{S}_\lambda(\mathcal{H} \otimes \mathcal{H}))$.
- But $\dim(\mathcal{S}_\lambda(\mathcal{H} \otimes \mathcal{H}))$ might be prime!
- So instead I propose to seek natural decompositions of subspaces of the joint Hilbert space $\mathcal{S}_\lambda(\mathcal{H} \otimes \mathcal{H})$:

 $$\mathcal{S}_\lambda(\mathcal{H} \otimes \mathcal{H}) = \bigoplus_{i} \mathcal{S}_i,$$

 where each $\mathcal{S}_i \cong \mathcal{H}^{(i)}_1 \otimes \mathcal{H}^{(i)}_2$ (5)

- The constituent systems corresponding to a given subspace $\mathcal{H}^{(i)}_1 \otimes \mathcal{H}^{(i)}_2$ must then be interpreted as co-existing only in those states represented by the subspace.

 Spoiler alert: These constituent systems will be “trans-branch” sums of our eventual particles.
So let us try to apply the Zanardi recipe to $\mathcal{A} = \mathcal{B}(S_\lambda(\mathcal{H} \otimes \mathcal{H}))$.

But $\text{dim}(S_\lambda(\mathcal{H} \otimes \mathcal{H}))$ might be prime!

So instead I propose to seek natural decompositions of **subspaces** of the joint Hilbert space $S_\lambda(\mathcal{H} \otimes \mathcal{H})$:

$$S_\lambda(\mathcal{H} \otimes \mathcal{H}) = \bigoplus_i \mathcal{S}_i,$$

where each $\mathcal{S}_i \cong \mathcal{H}_1^{(i)} \otimes \mathcal{H}_2^{(i)}$ (5)

The constituent systems corresponding to a given subspace $\mathcal{H}_1^{(i)} \otimes \mathcal{H}_2^{(i)}$ must then be interpreted as co-existing **only** in those states represented by the subspace.

Spoiler alert: These constituent systems will be “trans-branch” sums of our eventual particles.
Outline

1. Against factorism
 - Factorism defined
 - Factorism is not haecceitism
 - Why factorism is wrong

2. Qualitative individuation
 - Natural decompositions
 - Qualitative individuation

3. Micro-Everettianism
 - Branch-bound particles
 - Endurantism or perdurantism?

4. Problems for Micro-Everettianism
 - A preferred basis problem
 - Possible escapes?
Qualitative Individuation (1)

- ‘Qualitative individuation’ means to pick out by appeal to qualitative properties and relations. The entities that are picked out are those that possess the specified properties and relations.

- I assume that the possession of a property or properties by a constituent system is represented by a projector on the single-system Hilbert space \mathcal{H}. It need not be one-dimensional ($= a$ maximally specific property).
‘Qualitative individuation’ means to pick out by appeal to qualitative properties and relations. The entities that are picked out are those that possess the specified properties and relations.

I assume that the possession of a property or properties by a constituent system is represented by a projector on the single-system Hilbert space \(\mathcal{H} \). *It need not be one-dimensional* (= a maximally specific property).

So let \(E_{\alpha}, E_{\beta} \) be two individuation criteria, one for each constituent system. *We must have* \(E_{\alpha} \perp E_{\beta} \); i.e. \(E_{\alpha} E_{\beta} = E_{\beta} E_{\alpha} = 0 \).
Qualitative Individuation (1)

- ‘Qualitative individuation’ means to pick out by appeal to qualitative properties and relations. The entities that are picked out are those that possess the specified properties and relations.

- I assume that the possession of a property or properties by a constituent system is represented by a projector on the single-system Hilbert space \mathcal{H}. *It need not be one-dimensional* (= a maximally specific property).

- So let E_α, E_β be two individuation criteria, one for each constituent system. *We must have* $E_\alpha \perp E_\beta$; i.e. $E_\alpha E_\beta = E_\beta E_\alpha = 0$.

- Then I wish to say that the operator

$$\mathcal{E} := E_\alpha \otimes E_\beta + E_\beta \otimes E_\alpha$$ \hspace{1cm} (6)
‘Qualitative individuation’ means to pick out by appeal to qualitative properties and relations. The entities that are picked out are those that possess the specified properties and relations.

I assume that the possession of a property or properties by a constituent system is represented by a projector on the single-system Hilbert space \mathcal{H}. It need not be one-dimensional (≠ a maximally specific property).

So let E_α, E_β be two individuation criteria, one for each constituent system. We must have $E_\alpha \perp E_\beta$; i.e. $E_\alpha E_\beta = E_\beta E_\alpha = 0$.

Then I wish to say that the operator

$$\mathcal{E} := E_\alpha \otimes E_\beta + E_\beta \otimes E_\alpha \quad (6)$$

projects onto states of the assembly in which one system is in a state in $\text{ran}(E_\alpha)$ and the other is in a state in $\text{ran}(E_\beta)$. And there is no further question which is which.
‘Qualitative individuation’ means to pick out by appeal to qualitative properties and relations. The entities that are picked out are those that possess the specified properties and relations.

I assume that the possession of a property or properties by a constituent system is represented by a projector on the single-system Hilbert space \mathcal{H}. *It need not be one-dimensional* (= a maximally specific property).

So let E_α, E_β be two **individuation criteria**, one for each constituent system. *We must have $E_\alpha \perp E_\beta$; i.e. $E_\alpha E_\beta = E_\beta E_\alpha = 0$.*

Then I wish to say that the operator

$$\mathcal{E} := E_\alpha \otimes E_\beta + E_\beta \otimes E_\alpha$$

(6)

projects onto states of the assembly in which one system is in a state in $\text{ran}(E_\alpha)$ and the other is in a state in $\text{ran}(E_\beta)$. **And there is no further question which is which.**
Qualitative individuation (2)

Each square represents a product state.

H

H
Qualitative individuation (2)

Each square represents a product state.
Qualitative individuation (2)

Blue squares represent antisymmetrized states

Red squares represent symmetrized states
We now seek two single-system algebras a_α, a_β and an isomorphism $\pi_\lambda : A \rightarrow a_\alpha \otimes a_\beta$ such that $A_\alpha := \pi_\lambda^{-1}[a_\alpha \otimes \mathbf{1}]$ and $A_\beta := \pi_\lambda^{-1}[\mathbf{1} \otimes a_\beta]$ satisfy Zanardi et al's three conditions.

Consider a_α.

- $a_\alpha \subseteq B(\mathcal{H})$, since it is a single-system algebra.
Qualitative individuation (3)

We now seek two single-system algebras \(a_\alpha, a_\beta\) and an isomorphism \(\pi_\lambda : \mathcal{A} \rightarrow a_\alpha \otimes a_\beta\) such that \(\mathcal{A}_\alpha := \pi_\lambda^{-1}[a_\alpha \otimes 1]\) and \(\mathcal{A}_\beta := \pi_\lambda^{-1}[1 \otimes a_\beta]\) satisfy Zanardi et al's three conditions.

Consider \(a_\alpha\).

- \(a_\alpha \subseteq B(\mathcal{H})\), since it is a single-system algebra.

- But operating on the system ought not to lose track of it, so \(\forall A \in a_\alpha : [A, E_\alpha] = 0\).
We now seek two single-system algebras a_α, a_β and an isomorphism $\pi_\lambda : A \rightarrow a_\alpha \otimes a_\beta$ such that $A_\alpha := \pi_\lambda^{-1}[a_\alpha \otimes 1]$ and $A_\beta := \pi_\lambda^{-1}[1 \otimes a_\beta]$ satisfy Zanardi et al’s three conditions.

Consider a_α.

- $a_\alpha \subseteq B(H)$, since it is a single-system algebra.
- But operating on the system ought not to lose track of it, so $\forall A \in a_\alpha : [A, E_\alpha] = 0$.
- This narrows down the operators to
 \[
 \{ A \in B(H) \mid A = E_\alpha AE_\alpha \oplus (1 - E_\alpha)A(1 - E_\alpha) \}.
 \]
 But the second component makes no difference for the α-system.
Qualitative individuation (3)

We now seek two single-system algebras \(a_\alpha, a_\beta \) and an isomorphism \(\pi_\lambda : A \to a_\alpha \otimes a_\beta \) such that \(A_\alpha := \pi_\lambda^{-1}[a_\alpha \otimes 1] \) and \(A_\beta := \pi_\lambda^{-1}[1 \otimes a_\beta] \) satisfy Zanardi et al.'s three conditions.

Consider \(a_\alpha \).

- \(a_\alpha \subseteq B(H) \), since it is a single-system algebra.
- But operating on the system ought not to lose track of it, so \(\forall A \in a_\alpha : [A, E_\alpha] = 0. \)
- This narrows down the operators to \(\{ A \in B(H) \mid A = E_\alpha AE_\alpha \oplus (1 - E_\alpha)A(1 - E_\alpha) \} \). But the second component makes no difference for the \(\alpha \)-system.
- So \(a_\alpha = \{ A \in B(H) \mid A = E_\alpha AE_\alpha \} \cong B(\text{ran}(E_\alpha)) \).
We now seek two single-system algebras a_α, a_β and an isomorphism
$\pi_\lambda : A \to a_\alpha \otimes a_\beta$ such that $A_\alpha := \pi_\lambda^{-1}[a_\alpha \otimes 1]$ and $A_\beta := \pi_\lambda^{-1}[1 \otimes a_\beta]$ satisfy Zanardi et al.'s three conditions. Consider a_α.

- $a_\alpha \subseteq B(H)$, since it is a single-system algebra.
- But operating on the system ought not to lose track of it, so
 $\forall A \in a_\alpha : [A, E_\alpha] = 0$.
- This narrows down the operators to
 $\{A \in B(H) \mid A = E_\alpha A E_\alpha \oplus (1 - E_\alpha) A (1 - E_\alpha)\}$. But the second component makes no difference for the α-system.
- So $a_\alpha = \{A \in B(H) \mid A = E_\alpha A E_\alpha\} \cong B(\text{ran}(E_\alpha))$.
- Similarly, $a_\beta = \{A \in B(H) \mid A = E_\beta A E_\beta\} \cong B(\text{ran}(E_\beta))$.
Qualitative individuation (3)

We now seek two single-system algebras a_α, a_β and an isomorphism $\pi_\lambda : \mathcal{A} \rightarrow a_\alpha \otimes a_\beta$ such that $\mathcal{A}_\alpha := \pi_\lambda^{-1}[a_\alpha \otimes 1]$ and $\mathcal{A}_\beta := \pi_\lambda^{-1}[1 \otimes a_\beta]$ satisfy Zanardi et al's three conditions. Consider a_α.

- $a_\alpha \subseteq \mathcal{B}(\mathcal{H})$, since it is a single-system algebra.
- But operating on the system ought not to lose track of it, so $\forall A \in a_\alpha : [A, E_\alpha] = 0$.
- This narrows down the operators to $\{A \in \mathcal{B}(\mathcal{H}) \mid A = E_\alpha AE_\alpha \oplus (1 - E_\alpha)A(1 - E_\alpha)\}$. But the second component makes no difference for the α-system.
- So $a_\alpha = \{A \in \mathcal{B}(\mathcal{H}) \mid A = E_\alpha AE_\alpha\} \cong \mathcal{B}(\text{ran}(E_\alpha))$.
- Similarly, $a_\beta = \{A \in \mathcal{B}(\mathcal{H}) \mid A = E_\beta AE_\beta\} \cong \mathcal{B}(\text{ran}(E_\beta))$.

Adam Caulton
Quantum Counterpart Theory
Now set up an isomorphism π_λ between $\mathcal{E}[S_\lambda(\mathcal{H} \otimes \mathcal{H})]$ and $\text{ran}(E_\alpha) \otimes \text{ran}(E_\beta)$:
Now set up an isomorphism \(\pi_\lambda \) between \(\mathcal{E}[\mathcal{S}_\lambda(\mathcal{H} \otimes \mathcal{H})] \) and ran(\(E_\alpha \)) \(\otimes \) ran(\(E_\beta \)):
Now set up an isomorphism π_λ between $\mathcal{E}[S_\lambda(\mathcal{H} \otimes \mathcal{H})]$ and $\text{ran}(E_\alpha) \otimes \text{ran}(E_\beta)$:

$$\frac{1}{\sqrt{2}} (|\phi\rangle \otimes |\chi\rangle + |\chi\rangle \otimes |\phi\rangle) \xrightarrow{\pi_s} |\phi\rangle \otimes |\chi\rangle$$
Now set up an isomorphism π_λ between $\mathcal{E}[S_\lambda(\mathcal{H} \otimes \mathcal{H})]$ and $\text{ran}(E_\alpha) \otimes \text{ran}(E_\beta)$:

\[
\frac{1}{\sqrt{2}} (|\phi\rangle \otimes |\chi\rangle + |\chi\rangle \otimes |\phi\rangle) \xrightarrow{\pi_s} |\phi\rangle \otimes |\chi\rangle
\]

$A \otimes B + B \otimes A \xrightarrow{\pi_s} A \otimes B$
Qualitative individuation (4)

Now set up an isomorphism π_λ between $\mathcal{E}[S_\lambda(\mathcal{H} \otimes \mathcal{H})]$ and $\text{ran}(E_\alpha) \otimes \text{ran}(E_\beta)$:

$$\frac{1}{\sqrt{2}} (|\phi\rangle \otimes |\chi\rangle + |\chi\rangle \otimes |\phi\rangle) \xrightarrow{\pi_\lambda} |\phi\rangle \otimes |\chi\rangle$$

$$A \otimes B + B \otimes A \xrightarrow{\pi_\lambda} A \otimes B$$

Then all matrix elements are preserved for all states lying in $\mathcal{E}[S_\lambda(\mathcal{H} \otimes \mathcal{H})]$.
Now set up an isomorphism \(\pi_\lambda \) between \(\mathcal{E}[S_\lambda(\mathcal{H} \otimes \mathcal{H})] \) and \(\text{ran}(E_\alpha) \otimes \text{ran}(E_\beta) \):

\[
\frac{1}{\sqrt{2}} (|\phi\rangle \otimes |\chi\rangle + |\chi\rangle \otimes |\phi\rangle) \overset{\pi_s}{\mapsto} |\phi\rangle \otimes |\chi\rangle
\]

Then all matrix elements are preserved for all states lying in \(\mathcal{E}[S_\lambda(\mathcal{H} \otimes \mathcal{H})] \).
Qualitative individuation (5)

Then Zanardi et al's three conditions are satisfied:

1. **Local accessibility:** All $A \in B(\text{ran}(E))$ are symmetric.
Then Zanardi et al's three conditions are satisfied:

- **Local accessibility:** All $A \in \mathcal{B}(\text{ran}(\mathcal{E}))$ are symmetric.
- **Subsystem independence:** For all $A \in a_\alpha$, $B \in a_\beta$:

 $\left[\pi^{-1}_\lambda(A \otimes 1), \pi^{-1}_\lambda(1 \otimes B)\right] = 0$, since $E_\alpha \perp E_\beta$.
Then Zanardi et al's three conditions are satisfied:

1. **Local accessibility:** All $A \in \mathcal{B}(\text{ran}(\mathcal{E}))$ are symmetric.

2. **Subsystem independence:** For all $A \in a_\alpha, B \in a_\beta$:
 \[\pi^{-1}_\lambda(A \otimes 1), \pi^{-1}_\lambda(1 \otimes B) \] = 0, since $E_\alpha \perp E_\beta$.

3. **Completeness:** $\mathcal{B}(\text{ran}(\mathcal{E})) = A_\alpha \lor A_\beta \cong a_\alpha \otimes a_\beta$.

"Condensed" boson states are the only obstacle.
Then Zanardi et al's three conditions are satisfied:

1. **Local accessibility:** All $A \in B(\text{ran}(\mathcal{E}))$ are symmetric.
2. **Subsystem independence:** For all $A \in a_\alpha, B \in a_\beta$:

 $$[\pi_{\lambda}^{-1}(A \otimes 1), \pi_{\lambda}^{-1}(1 \otimes B)] = 0, \text{ since } E_\alpha \perp E_\beta.$$

3. **Completeness:** $B(\text{ran}(\mathcal{E})) = A_\alpha \lor A_\beta \cong a_\alpha \otimes a_\beta$.

So for any state in the subspace $\text{ran}(\mathcal{E})$, we may say that one system is in a state in $\text{ran}(E_\alpha)$, and the other is in a state in $\text{ran}(E_\beta)$.

[Adam Caulton](quantum-counterpart-theory.com)
Then Zanardi et al's three conditions are satisfied:

1. **Local accessibility:** All $A \in \mathcal{B}(\text{ran}(\mathcal{E}))$ are symmetric.

2. **Subsystem independence:** For all $A \in a_\alpha, B \in a_\beta : [\pi_\lambda^{-1}(A \otimes 1), \pi_\lambda^{-1}(1 \otimes B)] = 0$, since $E_\alpha \perp E_\beta$.

3. **Completeness:** $\mathcal{B}(\text{ran}(\mathcal{E})) = \mathcal{A}_\alpha \lor \mathcal{A}_\beta \cong a_\alpha \otimes a_\beta$.

So for any state in the subspace $\text{ran}(\mathcal{E})$, we may say that one system is in a state in $\text{ran}(E_\alpha)$, and the other is in a state in $\text{ran}(E_\beta)$.

But $E_\alpha \perp E_\beta$: so (in this subspace) the two systems possess different properties—i.e. they are **absolutely discernible**.
Then Zanardi et al's three conditions are satisfied:

1. **Local accessibility**: All $A \in \mathcal{B}(\text{ran}(\mathcal{E}))$ are symmetric.

2. **Subsystem independence**: For all $A \in a_\alpha, B \in a_\beta : [\pi^{-1}_\lambda (A \otimes 1), \pi^{-1}_\lambda (1 \otimes B)] = 0$, since $E_\alpha \perp E_\beta$.

3. **Completeness**: $\mathcal{B}(\text{ran}(\mathcal{E})) = A_\alpha \lor A_\beta \cong a_\alpha \otimes a_\beta$.

So for any state in the subspace $\text{ran}(\mathcal{E})$, we may say that one system is in a state in $\text{ran}(E_\alpha)$, and the other is in a state in $\text{ran}(E_\beta)$.

But $E_\alpha \perp E_\beta$: so (in this subspace) the two systems possess different properties—i.e. they are absolutely discernible.

This applies to any “off-diagonal” subspace. In particular, any fermion subspace. “Condensed” boson states are the only obstacle.
Then Zanardi et al's three conditions are satisfied:

1. **Local accessibility:** All $A \in \mathcal{B}(\text{ran}(\mathcal{E}))$ are symmetric.

2. **Subsystem independence:** For all $A \in a_\alpha, B \in a_\beta : [\pi^{-1}_\lambda(A \otimes 1), \pi^{-1}_\lambda(1 \otimes B)] = 0$, since $E_\alpha \perp E_\beta$.

3. **Completeness:** $\mathcal{B}(\text{ran}(\mathcal{E})) = \mathcal{A}_\alpha \vee \mathcal{A}_\beta \cong a_\alpha \otimes a_\beta$.

So for any state in the subspace $\text{ran}(\mathcal{E})$, we may say that one system is in a state in $\text{ran}(E_\alpha)$, and the other is in a state in $\text{ran}(E_\beta)$.

But $E_\alpha \perp E_\beta$: so (in this subspace) the two systems possess different properties—i.e. they are **absolutely discernible**.

This applies to any "off-diagonal" subspace. In particular, any fermion subspace. "Condensed" boson states are the only obstacle.
Outline

1. Against factorism
 - Factorism defined
 - Factorism is not haecceitism
 - Why factorism is wrong

2. Qualitative individuation
 - Natural decompositions
 - Qualitative individuation

3. Micro-Everettianism
 - Branch-bound particles
 - Endurantism or perdurantism?

4. Problems for Micro-Everettianism
 - A preferred basis problem
 - Possible escapes?
Micro-Everettianism: Finding the constituents

Credo: Give the same interpretation to each individuation block that the factorist gives to its isomorphic cousin.

- The individuation block \((E_\alpha, E_\beta)\) is the subspace of states in which system \(\alpha\) (the particle individuated by \(E_\alpha\)) and system \(\beta\) co-exist.

- Take any state which maps to a product state under \(\pi\lambda\). It will be of the form \(\frac{1}{\sqrt{2}}(|\xi\rangle \otimes |\eta\rangle \pm |\eta\rangle \otimes |\xi\rangle)\). (7)

 This state is not entangled according to a recent heterodoxy – Ghirardi, Marinatto & Weber (2002).

 Call such states branches.

- Under factorism, an assembly’s state is non-entangled iff its constituent systems occupy pure states.

- Under micro-Everettianism, the assembly is non-GMW-entangled iff 1D individuation criteria suffice to individuate the constituent systems.
Micro-Everettianism: Finding the consituents

- **Credo:** Give the same interpretation to each individuation block that the factorist gives to its isomorphic cousin.

- The individuation block \((E_\alpha, E_\beta)\) is the subspace of states in which system \(\alpha\) (the particle individuated by \(E_\alpha\)) and system \(\beta\) co-exist.

- Take any state which maps to a product state under \(\pi_\lambda\). It will be of the form

\[
\frac{1}{\sqrt{2}}(|\xi\rangle \otimes |\eta\rangle \pm |\eta\rangle \otimes |\xi\rangle)
\] (7)
Credo: Give the same interpretation to each individuation block that the factorist gives to its isomorphic cousin.

The individuation block \((E_\alpha, E_\beta)\) is the subspace of states in which system \(\alpha\) (the particle individuated by \(E_\alpha\)) and system \(\beta\) co-exist.

Take any state which maps to a product state under \(\pi_\lambda\). It will be of the form

\[
\frac{1}{\sqrt{2}} \left(|\xi\rangle \otimes |\eta\rangle \pm |\eta\rangle \otimes |\xi\rangle \right)
\]

This state is **not entangled** according to a recent heterodoxy – Ghirardi, Marinatto & Weber (2002).
Micro-Everettianism: Finding the constituents

- **Credo:** Give the same interpretation to each individuation block that the factorist gives to its isomorphic cousin.
- The individuation block \((E_\alpha, E_\beta)\) is the subspace of states in which system \(\alpha\) (the particle individuated by \(E_\alpha\)) and system \(\beta\) co-exist.
- Take any state which maps to a product state under \(\pi_\lambda\). It will be of the form

\[
\frac{1}{\sqrt{2}} (|\xi\rangle \otimes |\eta\rangle \pm |\eta\rangle \otimes |\xi\rangle)
\]

This state is **not entangled** according to a recent heterodoxy – Ghirardi, Marinatto & Weber (2002). Call such states **branches**.
Micro-Everettianism: Finding the constituents

- **Credo:** Give the same interpretation to each individuation block that the factorist gives to its isomorphic cousin.

- The individuation block \((E_\alpha, E_\beta)\) is the subspace of states in which system \(\alpha\) (the particle individuated by \(E_\alpha\)) and system \(\beta\) co-exist.

- Take any state which maps to a product state under \(\pi_\lambda\). It will be of the form

\[
\frac{1}{\sqrt{2}} (|\xi\rangle \otimes |\eta\rangle \pm |\eta\rangle \otimes |\xi\rangle)
\]

This state is **not entangled** according to a recent heterodoxy – Ghirardi, Marinatto & Weber (2002). Call such states **branches**.

- Under factorism, an assembly’s state is non-entangled iff its constituent systems occupy pure states.
Micro-Everettianism: Finding the constituents

- **Credo:** Give the same interpretation to each individuation block that the factorist gives to its isomorphic cousin.
- The individuation block \((E_\alpha, E_\beta)\) is the subspace of states in which system \(\alpha\) (the particle individuated by \(E_\alpha\)) and system \(\beta\) co-exist.
- Take any state which maps to a product state under \(\pi_\lambda\). It will be of the form

\[
\frac{1}{\sqrt{2}}(|\xi\rangle \otimes |\eta\rangle \pm |\eta\rangle \otimes |\xi\rangle)
\]

This state is **not entangled** according to a recent heterodoxy – Ghirardi, Marinatto & Weber (2002). Call such states **branches**.

- Under factorism, an assembly’s state is non-entangled iff its constituent systems occupy pure states.
- Under micro-Everettianism, the assembly is non-GMW-entangled iff 1D individuation criteria suffice to individuate the constituent systems.
Micro-Everettianism: Finding the consituents

- **Credo:** Give the same interpretation to each individuation block that the factorist gives to its isomorphic cousin.
- The individuation block \((E_\alpha, E_\beta)\) is the subspace of states in which system \(\alpha\) (the particle individuated by \(E_\alpha\)) and system \(\beta\) co-exist.
- Take any state which maps to a product state under \(\pi_\lambda\). It will be of the form

\[
\frac{1}{\sqrt{2}} (|\xi\rangle \otimes |\eta\rangle \pm |\eta\rangle \otimes |\xi\rangle)
\]

This state is **not entangled** according to a recent heterodoxy – Ghirardi, Marinatto & Weber (2002). Call such states **branches**.

- Under factorism, an assembly’s state is non-entangled iff its constituent systems occupy pure states.
- Under micro-Everettianism, the assembly is non-GMW-entangled iff 1D individuation criteria suffice to individuate the constituent systems.
Identity conditions and branch-bound particles

We can use \mathcal{E} as a **trans-branch** (a fortiori trans-state) **identity condition** for particles α and β:

'has a state in $\text{ran}(E_\alpha)$ and co-exists with a particle in a state in $\text{ran}(E_\beta)$';

Cf. Leibniz's monads; Lewis's world-bound individuals.
Identity conditions and branch-bound particles

- We can use \mathcal{E} as a **trans-branch** (*a fortiori* trans-state) **identity condition** for particles α and β:
 - ‘has a state in $\text{ran}(E_\alpha)$ and co-exists with a particle in a state in $\text{ran}(E_\beta)$’;
 - ‘has a state in $\text{ran}(E_\beta)$ and co-exists with a particle in a state in $\text{ran}(E_\alpha)$’.
Identity conditions and branch-bound particles

- We can use E as a **trans-branch** (a fortiori trans-state) **identity condition** for particles α and β:
 - ‘has a state in $\text{ran}(E_\alpha)$ and co-exists with a particle in a state in $\text{ran}(E_\beta)$’;
 - ‘has a state in $\text{ran}(E_\beta)$ and co-exists with a particle in a state in $\text{ran}(E_\alpha)$’.

- This identity condition induces an equivalence relation between **branch-bound** particles.
Identity conditions and branch-bound particles

- We can use E as a trans-branch (a fortiori trans-state) identity condition for particles α and β:
 ‘has a state in $\text{ran}(E_\alpha)$ and co-exists with a particle in a state in $\text{ran}(E_\beta)$’;
 ‘has a state in $\text{ran}(E_\beta)$ and co-exists with a particle in a state in $\text{ran}(E_\alpha)$’.

- This identity condition induces an equivalence relation between branch-bound particles.

- A branch-bound particle is one individuated by a maximally specific individuation criterion. E for two such particles picks out a unique state.
Identity conditions and branch-bound particles

- We can use \mathcal{E} as a **trans-branch** (a fortiori trans-state) **identity condition** for particles α and β:
 - ‘has a state in $\text{ran}(E_\alpha)$ and co-exists with a particle in a state in $\text{ran}(E_\beta)$’;
 - ‘has a state in $\text{ran}(E_\beta)$ and co-exists with a particle in a state in $\text{ran}(E_\alpha)$’.

- This identity condition induces an equivalence relation between **branch-bound** particles.

- A branch-bound particle is one individuated by a **maximally specific** individuation criterion. \mathcal{E} for two such particles picks out a unique state. Cf. Leibniz’s monads; Lewis’s world-bound individuals.
Identity conditions and branch-bound particles

- We can use \(E \) as a **trans-branch** (a fortiori trans-state) **identity condition** for particles \(\alpha \) and \(\beta \):
 - ‘has a state in \(\text{ran}(E_\alpha) \) and co-exists with a particle in a state in \(\text{ran}(E_\beta) \)’;
 - ‘has a state in \(\text{ran}(E_\beta) \) and co-exists with a particle in a state in \(\text{ran}(E_\alpha) \)’.

- This identity condition induces an equivalence relation between **branch-bound** particles.

- A branch-bound particle is one individuated by a **maximally specific** individuation criterion. \(E \) for two such particles picks out a unique state. Cf. Leibniz’s monads; Lewis’s world-bound individuals.

- No identity condition exists for “condensed” boson states, but we can extend the idea of branch-bound particles to these states.
Identity conditions and branch-bound particles

- We can use \mathcal{E} as a **trans-branch** (*a fortiori* trans-state) **identity condition** for particles α and β:
 - ‘has a state in $\text{ran}(E_\alpha)$ and co-exists with a particle in a state in $\text{ran}(E_\beta)$’;
 - ‘has a state in $\text{ran}(E_\beta)$ and co-exists with a particle in a state in $\text{ran}(E_\alpha)$’.

- This identity condition induces an equivalence relation between **branch-bound** particles.

- A branch-bound particle is one individuated by a **maximally specific** individuation criterion. \mathcal{E} for two such particles picks out a unique state. Cf. Leibniz’s monads; Lewis’s world-bound individuals.

- No identity condition exists for “condensed” boson states, but we can extend the idea of branch-bound particles to these states.
Outline

1. Against factorism
 - Factorism defined
 - Factorism is not haecceitism
 - Why factorism is wrong

2. Qualitative individuation
 - Natural decompositions
 - Qualitative individuation

3. Micro-Everettianism
 - Branch-bound particles
 - Endurantism or perdurantism?

4. Problems for Micro-Everettianism
 - A preferred basis problem
 - Possible escapes?
Endurantism or perdurantism? (1)

Micro-Everettianism interprets any state of the assembly as the superposition of (non-entangled) branches, consisting of correlated branch-bound particles.

By selecting a branch-bound particle from each branch, we can build arbitrary trans-branch fusions. Such fusions “perdure” through branches.
Endurantism or perdurantism? (1)

Micro-Everettianism interprets any state of the assembly as the superposition of (non-entangled) branches, consisting of correlated branch-bound particles.

By selecting a branch-bound particle from each branch, we can build arbitrary trans-branch fusions. Such fusions “perdure” through branches.

Is the “perdurantist” metaphysics avoidable? Might trans-branch particles “endure”?

Adam Caulton

Quantum Counterpart Theory
Endurantism or perdurantism? (1)

Micro-Everettianism interprets any state of the assembly as the superposition of (non-entangled) branches, consisting of correlated branch-bound particles.

By selecting a branch-bound particle from each branch, we can build arbitrary trans-branch fusions. Such fusions “perdure” through branches.

Is the “perdurantist” metaphysics avoidable? Might trans-branch particles “endure”?

1. Can an adequate individuation block be found to cover the entire Hilbert space?
Endurantism or perdurantism? (1)

Micro-Everettianism interprets any state of the assembly as the superposition of (non-entangled) branches, consisting of correlated branch-bound particles.

By selecting a branch-bound particle from each branch, we can build arbitrary trans-branch fusions. Such fusions “perdure” through branches.

Is the “perdurantist” metaphysics avoidable? Might trans-branch particles “endure”?

1. Can an adequate individuation block be found to cover the entire Hilbert space?

 NO – not even for fermions. (That is why we had to decompose subspaces of $S_\lambda(\mathcal{H} \otimes \mathcal{H})$.)
Endurantism or perdurantism? (1)

Micro-Everettianism interprets any state of the assembly as the superposition of (non-entangled) branches, consisting of correlated branch-bound particles.

By selecting a branch-bound particle from each branch, we can build arbitrary trans-branch fusions. Such fusions “perdure” through branches.

Is the “perdurantist” metaphysics avoidable? Might trans-branch particles “endure”?

1. Can an adequate individuation block be found to cover the entire Hilbert space?

 NO – not even for fermions. (That is why we had to decompose *subspaces* of $S_\lambda(\mathcal{H} \otimes \mathcal{H})$.)
2 What about **disjunctive individuation**?

e.g. Particle α is the particle on the left:

$$\mathcal{E} = \int_{-\infty}^{\infty} dx \int_{x}^{\infty} dy \ E_x \otimes E_y + E_y \otimes E_x$$ (8)
2 What about disjunctive individuation?
e.g. Particle α is the particle on the left:

$$\mathcal{E} = \int_{-\infty}^{\infty} dx \int_{x}^{\infty} dy \ E_x \otimes E_y + E_y \otimes E_x$$

(8)

But this strategy fails to recover the full algebra of quantities for the assembly, due to superselection between different individuation blocks.
2 What about **disjunctive individuation**?

E.g. Particle α is the particle on the left:

$$\mathcal{E} = \int_{-\infty}^{\infty} dx \int_{x}^{\infty} dy \ E_x \otimes E_y + E_y \otimes E_x$$

(8)

But this strategy fails to recover the full algebra of quantities for the assembly, due to **superselection** between different individuation blocks. This is a distinctly quantum problem.
Endurantism or perdurantism? (2)

2 What about **disjunctive individuation**?

 e.g. Particle α is the particle on the left:

 \[
 \mathcal{E} = \int_{-\infty}^{\infty} dx \int_x^{\infty} dy \ E_x \otimes E_y + E_y \otimes E_x \tag{8}
 \]

 But this strategy fails to recover the full algebra of quantities for the assembly, due to **superselection** between different individuation blocks. This is a distinctly quantum problem.

So endurance will require at least that each particle is “individuation-block-bound”.
2 What about **disjunctive individuation**?

e.g. Particle α is the particle on the left:

$$
\mathcal{E} = \int_{-\infty}^{\infty} dx \int_{x}^{\infty} dy \ E_x \otimes E_y + E_y \otimes E_x
$$

But this strategy fails to recover the full algebra of quantities for the assembly, due to **superselection** between different individuation blocks. This is a distinctly quantum problem.

So endurance will require at least that each particle is “individuation-block-bound”.

But how do we choose blocks? A “Methuselah problem”.
2 What about **disjunctive individuation**?

e.g. Particle α is the particle on the left:

$$\mathcal{E} = \int_{-\infty}^{\infty} dx \int_{x}^{\infty} dy \; E_x \otimes E_y + E_y \otimes E_x$$

(8)

But this strategy fails to recover the full algebra of quantities for the assembly, due to **superselection** between different individuation blocks. This is a distinctly quantum problem.

So endurance will require at least that each particle is “individuation-block-bound”.

But how do we choose blocks? A “Methuselah problem”.
Outline

1. Against factorism
 - Factorism defined
 - Factorism is not haecceitism
 - Why factorism is wrong

2. Qualitative individuation
 - Natural decompositions
 - Qualitative individuation

3. Micro-Everettianism
 - Branch-bound particles
 - Endurantism or perdurantism?

4. Problems for Micro-Everettianism
 - A preferred basis problem
 - Possible escapes?
A preferred basis problem

A state’s being GMW-entangled or not is a basis-independent matter. So its being a branch is basis-independent.
A preferred basis problem

A state’s being GMW-entangled or not is a basis-independent matter. So its being a branch is basis-independent. But a state may be non-GMW-entangled in a variety of bases.
A preferred basis problem

A state’s being GMW-entangled or not is a basis-independent matter. So its being a branch is basis-independent. But a state may be non-GMW-entangled in a variety of bases. Consider, e.g., the spherically symmetric state

$$\frac{1}{\sqrt{2}} (\left| \uparrow \right\rangle \otimes \left| \downarrow \right\rangle - \left| \downarrow \right\rangle \otimes \left| \uparrow \right\rangle) = \frac{1}{\sqrt{2}} (\left| \leftarrow \right\rangle \otimes \left| \rightarrow \right\rangle - \left| \rightarrow \right\rangle \otimes \left| \leftarrow \right\rangle)$$

(9)
A state’s being GMW-entangled or not is a basis-independent matter. So its being a **branch** is basis-independent. But a state may be non-GMW-entangled in a variety of bases. Consider, e.g., the spherically symmetric state

\[
\frac{1}{\sqrt{2}} (|\uparrow\rangle \otimes |\downarrow\rangle - |\downarrow\rangle \otimes |\uparrow\rangle) = \frac{1}{\sqrt{2}} (|\leftarrow\rangle \otimes |\rightarrow\rangle - |\rightarrow\rangle \otimes |\leftarrow\rangle)
\]

Generally, for an N-fermion non-GMW-entangled state, the choice of single-particle bases is parameterized by the $(N - 1)!2^{N-1}$-dimensional manifold

\[
\left(\mathbb{C}P^{N-1} \times \mathbb{C}P^{N-2} \times \cdots \times \mathbb{C}P^1 \right) / S_N
\]
A preferred basis problem

A state’s being GMW-entangled or not is a basis-independent matter. So its being a **branch** is basis-independent. But a state may be non-GMW-entangled in a variety of bases. Consider, e.g., the spherically symmetric state

\[
\frac{1}{\sqrt{2}} (|\uparrow\rangle \otimes |\downarrow\rangle - |\downarrow\rangle \otimes |\uparrow\rangle) = \frac{1}{\sqrt{2}} (|\leftarrow\rangle \otimes |\rightarrow\rangle - |\rightarrow\rangle \otimes |\leftarrow\rangle)
\]

(9)

Generally, for an \(N\)-fermion non-GMW-entangled state, the choice of single-particle bases is parameterized by the \((N - 1)!2^{N-1}\)-dimensional manifold

\[
\left(\mathbb{CP}^{N-1} \times \mathbb{CP}^{N-2} \times \cdots \times \mathbb{CP}^{1} \right) / S_N
\]

(10)

So the constituent branch-bound particles are under-determined by the assembly’s state.
A preferred basis problem

A state’s being GMW-entangled or not is a basis-independent matter. So its being a **branch** is basis-independent. But a state may be non-GMW-entangled in a variety of bases. Consider, e.g., the spherically symmetric state

\[
\frac{1}{\sqrt{2}} \left(|\uparrow\rangle \otimes |\downarrow\rangle - |\downarrow\rangle \otimes |\uparrow\rangle \right) = \frac{1}{\sqrt{2}} \left(|\leftarrow\rangle \otimes |\rightarrow\rangle - |\rightarrow\rangle \otimes |\leftarrow\rangle \right) \tag{9}
\]

Generally, for an \(N\)-fermion non-GMW-entangled state, the choice of single-particle bases is parameterized by the \((N - 1)!2^{N-1}\)-dimensional manifold

\[
\left(\mathbb{CP}^{N-1} \times \mathbb{CP}^{N-2} \times \cdots \times \mathbb{CP}^1 \right) / S_N \tag{10}
\]

So the constituent branch-bound particles are under-determined by the assembly’s state.
Outline

1. Against factorism
 - Factorism defined
 - Factorism is not haecceitism
 - Why factorism is wrong

2. Qualitative individuation
 - Natural decompositions
 - Qualitative individuation

3. Micro-Everettianism
 - Branch-bound particles
 - Endurantism or perdurantism?

4. Problems for Micro-Everettianism
 - A preferred basis problem
 - Possible escapes?
Possible escapes?

One size fits all. A categorically privileged single-particle basis. Ad hoc.
One size fits all. A categorically privileged single-particle basis. *Ad hoc.*

Complicate. “Micro-decoherence”.
Possible escapes?

1. **One size fits all.** A categorically privileged single-particle basis. *Ad hoc.*

2. **Complicate.** “Micro-decoherence”. Will not apply to all states.
Possible escapes?

- **One size fits all.** A categorically privileged single-particle basis. *Ad hoc.*

- **Complicate.** “Micro-decoherence”. Will not apply to all states.

- **Coalesce.** Each bb-particle associated with one single-particle basis is identical to some bb-particle associated with any other single-particle basis.
Possible escapes?

1. **One size fits all.** A categorically privileged single-particle basis. *Ad hoc.*

2. **Complicate.** “Micro-decoherence”. Will not apply to all states.

3. **Coalesce.** Each bb-particle associated with one single-particle basis is identical to some bb-particle associated with any other single-particle basis. *Incompleteness and Kochen-Specker.*
Possible escapes?

1. **One size fits all.** A categorically privileged single-particle basis. *Ad hoc.*

2. **Complicate.** “Micro-decoherence”. Will not apply to all states.

3. **Coalesce.** Each bb-particle associated with one single-particle basis is identical to some bb-particle associated with any other single-particle basis. Incompleteness and Kochen-Specker.

4. **Multiply.** Reify all bb-particles; each is wholly distinct from every other.
Possible escapes?

1. **One size fits all.** A categorically privileged single-particle basis. *Ad hoc.*

2. **Complicate.** “Micro-decoherence”. Will not apply to all states.

3. **Coalesce.** Each bb-particle associated with one single-particle basis is identical to some bb-particle associated with any other single-particle basis. Incompleteness and Kochen-Specker.

4. **Multiply.** Reify all bb-particles; each is wholly distinct from every other. Classical limit?
Possible escapes?

1. **One size fits all.** A categorically privileged single-particle basis. *Ad hoc.*

2. **Complicate.** “Micro-decoherence”. Will not apply to all states.

3. **Coalesce.** Each bb-particle associated with one single-particle basis is identical to some bb-particle associated with any other single-particle basis. Incompleteness and Kochen-Specker.

4. **Multiply.** Reify all bb-particles; each is wholly distinct from every other. Classical limit?

5. **Overlap.** Reify all bb-particles; bb-particles in different single-particle bases partly overlap, so that the plurality of all bb-particles in each single-particle basis are *jointly* identical one to another.
Possible escapes?

- **One size fits all.** A categorically privileged single-particle basis. *Ad hoc.*

- **Complicate.** “Micro-decoherence”. Will not apply to all states.

- **Coalesce.** Each bb-particle associated with one single-particle basis is identical to some bb-particle associated with any other single-particle basis. Incompleteness and Kochen-Specker.

- **Multiply.** Reify all bb-particles; each is wholly distinct from every other. Classical limit?

- **Overlap.** Reify all bb-particles; bb-particles in different single-particle bases partly overlap, so that the plurality of all bb-particles in each single-particle basis are *jointly* identical one to another. Overlap = part-identity = identity of parts. What are the parts?
Possible escapes?

1. **One size fits all.** A categorically privileged single-particle basis. *Ad hoc.*

2. **Complicate.** “Micro-decoherence”. Will not apply to all states.

3. **Coalesce.** Each bb-particle associated with one single-particle basis is identical to some bb-particle associated with any other single-particle basis. Incompleteness and Kochen-Specker.

4. **Multiply.** Reify all bb-particles; each is wholly distinct from every other. Classical limit?

5. **Overlap.** Reify all bb-particles; bb-particles in different single-particle bases partly overlap, so that the plurality of all bb-particles in each single-particle basis are *jointly* identical one to another. Overlap = part-identity = identity of parts. What are the parts?
Conclusion: hard choices

Options for a realist, completist interpretation of QM for “indistinguishable systems”:

1. Factorism – but the factorist’s particles are obviously not physical!
Conclusion: hard choices

Options for a realist, completist interpretation of QM for “indistinguishable systems”:

1. Factorism – but the factorist’s particles are obviously not physical!

2. Micro-Everettianism – but how to solve the preferred basis problem?
Conclusion: hard choices

Options for a realist, completist interpretation of QM for “indistinguishable systems”:

1. Factorism – but the factorist’s particles are obviously not physical!

2. Micro-Everettianism – but how to solve the preferred basis problem?

3. Denying that particles are the proper subject matter of QM.
Conclusion: hard choices

Options for a realist, completist interpretation of QM for “indistinguishable systems”:

1. Factorism – but the factorist’s particles are obviously not physical!

2. Micro-Everettianism – but how to solve the preferred basis problem?

3. Denying that particles are the proper subject matter of QM.